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NOMENCLATURE * 

a cdnstant ; 

exponent in the temperature profile ; 
local drag coefficient; 

a constant; 

a constant; 

laminar Prandtl number; 

turbulent Prandtl number ; 
Stanton number; 

non-dimensional heat-transfer coefficient (12); 

temperature ; 
non-dimensional velocity along the walq 

non-dimensional distance along the wall ; 
non-dimensional distance (5); 

non-dimensional distance normal to the wall ; 
non-dimensional thickness of the temperature 

profile ; 
non-dimensional temperature (10) ; 
non-dimensional distance (4) ; 
turbulent contribution to the non-dimensional 

total viscosity. 

Subscripts 

G main stream ; 

S, wall. 

1. INTRODUCTION 

FOLLOWING a method put forward by Spalding [l], Gardner 

and Kestin [2] obtained exact numerical solutions of the 

partial differential equation for heat transfer through uni- 

form-property “universal” turbulent boundary layer, for 

various Prandtl numbers. In a later paper [3], Spalding 

generalized the solutions in reference [2] for non-unity 

turbulent Prandtl number and also gave exact analytical 

solutions for the case of N, = N,,,, with a power-law 

velocity profile. 

* Nomenclature is as in reference [3] where further 

details can be found. The numbers in parentheses denote 

the defining equations. 

It is the purpose of the present communication to present 

a profile method for solving the same problem and to ex- 

amine the extent to which the resulting approximate solu- 

tions agree with the exact solutions. The special feature of this 

method is that two integral equations are used in conjunction 
with a power-law temperature profile, the two free para- 

meters in the profile being the exponent and the “thickness” 

of the profile. 

The step-wall-temperature problem of a turbulent boun- 

dary layer is taken here to illustrate the method ; however, the 

method can also be applied to many problems of the 

boundary-layer type in fluid mechanics, heat conduction 

and diffusion. 

2. DESCRIPTION OF THE METHOD 

Here all the equations will be given in the generalized form 

according to reference [3]. 

2.1 The partial differential equation 
The temperature T in a uniform-property universal 

turbulent boundary layer has been shown in reference [3] to 

be governed by : 

dT 1 d 

8x+/N,,,,) = _____ - uf(1 + 4) au+ 

x 

Here 4 is to be obtained from the universal velocity profile 

by the relation : 

1++. 
Equation (1) represents the conservation of enthalpy in 

the boundary layer for uniform values of density and specific 
heat (i.e. small velocities and temperature differences). The 

two fundamental assumptions made in obtaining this equa- 

tion are : that there is a universal relationship between u + and 

y+ ; and that the shear stress is uniform across the boundary 

layer. These assumptions are known to hold quite well, at 

least in the part of the boundary layer nearer to the wall and, 
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therefore, equation (1) can be expected to give correct pre- 
dictions of heat transfer whenever the thermal boundary 
layer is appreciably thinner than the velocity boundary 
layer. 

has the significance of the “thickness” of the temperature 
profile. 

The dimensionless heat-transfer coefficient, S,, defined 
by: 

Equation (1) can be rewritten in a more convenient form, 
in terms of a new independent variable [, as : 

CYT 1 a2T 

z = u+(NPrJNPI + C#J) ?j+ 
(3) 

where 

“+ 

can be shown to be equal to -(Np,/Np,,,)@9/a& There- 
fore, in terms of the profile parameters, we obtain : 

’ = (Nr,.t/N~r + 4) s 1+4J du+ 

’ 
(4) 

0 

and 
X = x+/Np,,,. (5) 

Here we consider the step-wall-temperature problem ; so 
the boundary conditions are : 

x=0, 530 
T = T,; (6) 

all X, 5-a 

x > 0, 5 =o: T = T,. (7) 

2.2 Integral equations 
From the partial differential equation (3), we form two 

integral equations by integration with respect to 5 from 0 
to cc , after multiplication respectively by unity and T, as 
weighting functions. The resulting integral equations are : 

d = 
- ju+(N,,,,,N,. + $)ed< = - E 
dX 0 x s 

; (8) 
0 

011 

d 

+,, s u+(N~,,~~N~, 82 

80 

+ 4) dt = - 0 G (i s 
0 

_ 

where 0 is the dimensionless temperature defined by : 

(10) 

In order to solve these integral equations we need an 
assumption for the temperature profile. 

2.3 The temperature profile 
We shall use the following two-parameter temperature 

profile. 

5 $6: e = (1 - 5/s)? 

5 > 6: e = 0. 
(11) 

Here the two parameters are: b, the exponent ; and 6 which 

(12) 

(13) 

3. SOLUTION OF THE INTEGRAL EQUATIONS 

Here we apply the method outlined above to the following 
three cases : 

(i) laminar velocity profile: y+ = u+ ; N,, = N,,,,; 
(ii) seventh-power-law velocity profile: y+ = au+‘; 

N,, = N,,, I ; and 
(iii) velocity profile given by the universal law of the wall 

due to Spalding [4]; NPI/NP,,, = 0.71, 1, 7, 30, 100, 
1ooO. 

Exact analytical solutions for the first two cases are given in 
reference [3] ; for the third case, exact numerical solutions 
are presented in reference [2]. 

It can be easily seen that, when N, = NP,,,, the new inde- 
pendent variable 5 becomes the same as u+. 

3.1 Laminar velocity profile: y+ = u+ ; N,, = NPI,, 
Here 

1+$=$=1. 

Substituting the expression for the temperature profile 
and eliminating 6 from the two integral equations, namely (8) 
and (9), we get : 

6b= - 7b - 2 = 0. (15) 

This equation has the positive root b = 1.404; this is the 
relevant one in the present problem. Integration of equation 
(8) then yields : 

and 

6 = {l+.b(b + l)(b + 2)}* Xf; (16) 

ST = b/S = b*{1.5(b + l)(b + 2)}-+ X-+. (17) 

Substituting the value of b, we get, as the final result : 

ST = 0.543x-‘. (18) 

The corresponding exact solution given in reference [3] is 

S, = 0+3835X-+. (19) 

The agreement is very satisfactory. 
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3.2 Seventh-power-law velocity profile: y+ = au+‘; Nr, = 
N PI, t 

Here 

1 + q5 = 5 = lau+‘. 

Eliminating 6 from the two integral equations, we get : 

(26 + 1)(2b + 2)(2b + 3), (2b + 8) 26 - 1 

(b + 1Xb + 2)(b + 3). . (b + 8) =2(b 
(21) 

The relevant root of this equation is b = 1.11. Now the 
integration of (8) yields : 

6 = 9b(b + l)(b + 2)(b + 3). . (b + 8) 

i 

1’gXI,9 

56a(7!) 
; (22) 

and 

S, = b/6 = 

b8/9 I 56a(7 !) 

9(b + l)(b + 2)(b + 3). . (b + 
X- 1’9. (23) 

Substituting the value of b as obtained above, and taking 
a = 2.412 x lo-’ as used in reference [3], we get, as the 
final solution: 

s, = o.1504x-“9. (24) 

The exact solution for this case, as given in reference [3], is 

s T = 01479x-“9. (25) 

Again, the coefficients agree within 2 per cent. 

3.3 Universal law ofthe wall, various Prandtl numbers 
For this case, we use the following law of the wall due to 

Spalding [4] : 

y+ = u+ + ; eKu+ 

-(F>‘-($r}, (26) 

with K = 0.4, and E = 9.025. The author’s thanks are due to Professor D. B. Spalding 
This gives : for suggesting the method and for his encouragement. 

+ 
l+$=$=l+~ - 1 - Ku+ 

(Ku+)’ ---- 
2! 

In this case, it can be seen that the exponent b does not 
have a constant value, but changes with X. Therefore, the 
two integral equations should be treated as two simultaneous 
ordinary differential equations with b and 6 as the dependent 
variables. Then these can be solved by the standard tech- 
niques of numerical forward integration. 

Unlike the first two cases, here it is necessary to have u+ 
as a function of { and Nr.,/Np,,,. In the present work, this 
function was obtained by evaluating the quadrature in 
equation (4) numerically. 

The solutions were obtained from X = 1 to X = lo6 for 

Nr+lNr,, t = 0.71, 1, 7, 30, 100 and 1000. For the starting 
values at X = 1, the results of the first case (described in 
Section 3.1 above) were used. Thus the values of b and 6 at 
the start of the integration were given by : 

and 

b = 1404, (28) 

6 = {1.5b(b + 1Xb + 2)j*XXf(N,,/N,, J+ (29) 

[This is a modified form of equation (16); the modification 
accounts for the fact that here Nr, # Np,,t.] Since the law 
of the wall given by equation (26) has y+ = u’ as the asymp- 
tote for small u+, the results of the first case form a good 
starting point at low values of X. 

The difference between the present results and the exact 
solutions is everywhere less than 2 per cent*; this can be seen 
from Table 1 where the results of the present computations 
are given with the exact values from reference [2]. Thus, 
by use of two integral equations it has been possible to attain 
good accuracy with much less computing time than was 
needed for the exact solutions. 

4. CONCLUSIONS 

(i) An approximate method for the solution of the partial 
differential equation for heat transfer in a uniform-property 
universal turbulent boundary layer has been described. The 
method is of profile type; two integral equations are used to 
obtain the two free parameters in the temperature profile. 

(ii) Approximate solutions obtained by use of this method 
have been compared with available exact solutions. The 
agreement is very good. 

ACKNOWLEDGEMENT 

* In the case of N,.,/NP,,t = 30, the present results 
differ from the exact values by about 45 per cent for 
large values of X. This is surprising in view of the good 
agreement for all the other values of N,,/N,,,. The 
reason may be that the exact values from reference [2] 
are somewhat in error in this case. This conclusion is fur- 
ther supported by the comparison of Table 1 and Table 
2 in reference [3]; for large values of X, the value of 
(c - u’) from Table 1 should be equal to [(c//2)*/ 
N,, - l/S,,,] from Table 2. It can be seen that this 
condition is not satisfied with sufficient accuracy for 
only Nr.,/Np,,, = 30. 
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